Unsupervised Discriminant Embedding in Cluster Spaces
نویسندگان
چکیده
This paper proposes a new representation space, called the cluster space, for data points that originate from high dimensions. Whereas existing dedicated methods concentrate on revealing manifolds from within the data, we consider here the context of clustered data and derive the dimension reduction process from cluster information. Points are represented in the cluster space by means of their a posteriori probability values estimated using Gaussian Mixture Models. The cluster space obtained is the optimal space for discrimination in terms of the Quadratic Discriminant Analysis (QDA). Moreover, it is shown to alleviate the negative impact of the curse of dimensionality on the quality of cluster discrimination and is a useful preprocessing tool for other dimension reduction methods. Various experiments illustrate the effectiveness of the cluster space both on synthetic and real data.
منابع مشابه
Locally Linear Embedded Eigenspace Analysis
The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...
متن کاملUnsupervised Image Steganalysis Method Using Self-Learning Ensemble Discriminant Clustering
Image steganography is a technique of embedding secret message into a digital image to securely send the information. In contrast, steganalysis focuses on detecting the presence of secret messages hidden by steganography. The modern approach in steganalysis is based on supervised learning where the training set must include the steganographic and natural image features. But if a new method of s...
متن کاملOptimal Cluster Preserving Embedding of Nonmetric Proximity Data
For several major applications of data analysis, objects are often not represented as feature vectors in a vector space, but rather by a matrix gathering pairwise proximities. Such pairwise data often violates metricity and, therefore, cannot be naturally embedded in a vector space. Concerning the problem of unsupervised structure detection or clustering, in this paper, a new embedding method f...
متن کاملSpectral clustering and discriminant analysis for unsupervised feature selection
In this paper, we propose a novel method for unsupervised feature selection, which utilizes spectral clustering and discriminant analysis to learn the cluster labels of data. During the learning of cluster labels, feature selection is performed simultaneously. By imposing row sparsity on the transformation matrix, the proposed method optimizes for selecting the most discriminative features whic...
متن کاملUnsupervised Pose Estimation Across Domains
We attempt to solve the problem of pose/viewpoint estimation on 2D images without the presence of a large, well-labeled 2D or 3D dataset within our target domain. In order to accomplish this, we leverage our few available objects models to create 2D object renderings at known poses as a source domain, and learn pose estimation in our target domain images using the source domain images. We do so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009